Wang M , Xu Z , Liu W , Li M , Wang H , Yang D , Ma W , Zhou G , Yu L .
Res Vet Sci. 2019 Mar 15;124:178-185. doi: 10.1016/j.rvsc.2019.03.015. [Epub ahead of print]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of cloven-hoofed animals. Vaccination is a key element in the control of FMD among countries where the disease is enzootic. Differentiating infected from vaccinated animals in herds after immunization is an important component of effective eradication strategies. Non-structural protein (NSP) 3A of FMDV is as part of a larger detected antigen that is used for this differential diagnosis. Here, we generated a specific monoclonal antibody (MAb) against FMDV non-structural protein called 3A10, and further defined the linear epitopes recognized by the MAb 3A10 using a series of peptides that expressed GST-fused protein. Using Western blot, it was showed that the 5-aa peptide 126ERTLP130 of 3A was the minimal epitope reactive to MAb 3A10. Alanine-scanning mutagenesis analysis revealed that Arg127 and Leu129 were crucial for MAb 3A10 binding to 126ERTLP130. Furthermore, sequence alignment analysis, indicated that the epitope 126ERTLP130 recognized by 3A10 was shown to be conserved among seven serotypes of FMDV strains. The synthetic peptide Elisa demonstrated that this epitope peptide could be recognized by sera from FMDV-infected pigs and cattle, but negative reactivity to unvaccinated and vaccinated healthy animal sera. Thus, the MAb reagents and the linear epitopes defined herein provide theoretical and technical support for the development of diagnostic tools for infection differentiating FMDV infected from vaccinated animals.
Copyright © 2019 Elsevier Ltd. All rights reserved.
KEYWORDS:
Epitope mapping; Foot-and-mouth disease virus; Monoclonal antibody; Non-structural protein 3A