当前位置: 首页» 组织机构» 科研团队» 重要人兽共患病与烈性外来病创新团队» 首席科学家

首席科学家

步志高,博士,研究员,现任中国农业科学院哈尔滨兽医研究所所长、中国农业科学院研究生院兽医学院院长,国家动物疫病防控高级别生物安全实验室主任,重要人兽共患病与烈性外来病研究团队首席研究员,黑龙江省“头雁计划”团队头雁;兼中国畜牧兽医学会副理事长、中国畜牧兽医学会生物技术学分会理事长、中国畜牧兽医学会动物传染病学分会副理事长;黑龙江省第十二、十三次党代会代表,黑龙江省十三、十四届人大代表、财经委委员。

长期致力于重大动物疫病和人兽共患病防控研究及国家生物安全科技创新能力建设。组织领导了我国首个大动物生物安全四级(P4)实验室的建设运行,是全球建成运行的少数几个大动物P4感染实验室之一。研制的禽流感、新城疫重组二联活疫苗,是国际首个产业化的RNA病毒活载体疫苗,获2007年国家技术发明二等奖,累计生产应用300亿剂量。研制的羊种布鲁氏菌基因缺失活疫苗及配套鉴别诊断技术,突破了制约布病疫苗应用关键技术瓶颈,为2022-26年农业农村部畜间布病防控五年行动提供有力支撑。在非洲猪瘟流行病学、病原学研究及疫苗攻关取得重要进展,有关研究在Science上发表,被评为“2019年度中国科学十大进展”;研制了安全、有效非洲猪瘟基因缺失活疫苗,完成了生物安全生产性试验和新兽药临床试验。在新冠病毒感染机制研究、疫苗及治疗剂的动物模型评价取得进展,有关动物易感性研究结果在Science上发表,为2020年全球最受关注的20篇科技论文之一。针对尼帕脑炎、裂谷热、埃博拉等新发烈性人兽共患病,开展了防控技术的储备研究。先后发表SCI论文160余篇,获发明专利50余件、疫苗及诊断试剂新兽药证书5件,获国家技术发明二等奖1项,为满足重大动物疫病和人兽共患病防控国家需求、提升我国生物安全科技支撑和创新能力做出了一定成绩和贡献。

通讯作者代表性论文:

  1. Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020, 368(6494):1016-1020.

  2. Wang N, Zhao D, Wang J, et al. Architecture of African swine fever virus and implications for viral assembly. Science, 2019, 366(6465): 640-644.

  3. Ilyas Khan 1, Sunan Li 1, Lihong Tao, et al. Tubeimosides are pan-coronavirus and filovirus inhibitors that can block their fusion protein binding to Niemann-Pick C1. Nature communications, 2024 Jan 2;15(1):162.

  4. Zhao D, Sun E, Huang L, et al. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nature communications, 2023, 14(1): 3096.

  5.  Shuai L, Zhong G, Yuan Q, et al. Replication, pathogenicity, and transmission of SARS-CoV-2 in minks. National science review, 2021, 8(3): 291-299.

  6. Wu S, Zhong G, Zhang J, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nature communications, 2020, 11(1): 4081-4088.

  7. Wang J, Yang G, Wang X, et al. SARS-CoV-2 uses metabotropic glutamate receptor subtype 2 as an internalization factor to infect cells. Cell discovery, 2021 Dec 14;7(1):119.

  8. Wang J, Shuai L, Wang C, et al. Mouse-adapted SARS-CoV-2 replicates efficiently in the upper and lower respiratory tract of BALB/c and C57BL/6J mice. Protein & cell, 2020, 11(10): 776-782.

  9. Wang J, Luo J, Wen Z, et al. Alpha-Soluble NSF Attachment Protein Prevents the Cleavage of the SARS-CoV-2 Spike Protein by Functioning as an Interferon-Upregulated Furin Inhibitor. mBio, 2022, 13(1): e0244321.

  10. Wang X, Luo J, Wen Z, et al. Diltiazem inhibits SARS-CoV-2 cell attachment and internalization and decreases the viral infection in mouse lung. PLoS pathogens, 2022, 18(2): e1010343.

  11. Zhao M, Zhu Y, Zhang L, et al. Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell discovery, 2022, 8(1): 53-71.

  12. Wang W, Li W, Wen Z, et al. Gossypol Broadly Inhibits Coronaviruses by Targeting RNA-Dependent RNA Polymerases. Advanced science, 2022, 9(35): e2203499.

  13. Hou N, Shuai L, Zhang L, et al. Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro. ACS central science, 2023, 9(2): 217-227.

  14. Wang J, Wang Z, Liu R, et al. Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS pathogens, 2018, 14(7): e1007189.

  15. Wang X, Wen Z, Cao H, et al. Transferrin Receptor Protein 1 Cooperates with mGluR2 To Mediate the Internalization of Rabies Virus and SARS-CoV-2. Journal of virology, 2023, 97(2): e0161122.

  16.  Wang X, Wen Z, Cao H, et al. Transferrin Receptor Protein 1 Is an Entry Factor for Rabies Virus. Journal of virology, 2023, 97(2): e0161222.

  17. Shi Y, Shuai L, Wen Z, et al. The preclinical inhibitor GS441524 in combination with GC376 efficaciously inhibited the proliferation of SARS-CoV-2 in the mouse respiratory tract. Emerging microbes & infections, 2021, 10(1): 481-492.

  18. Li F, Luo M, Zhou W, et al. Single cell RNA and immune repertoire profiling of COVID-19 patients reveal novel neutralizing antibody. Protein & cell, 2021, 12(10): 751-755.

  19. Sun E, Huang L, Zhang X, et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging microbes & infections, 2021, 10(1): 2183-2193.

  20. Sun E, Zhang Z, Wang Z, et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China Life sciences, 2021, 64(5): 752-765.

  21. Zhao D, Liu R, Zhang X, et al. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging microbes & infections, 2019, 8(1): 438-447.

  22. Wen X, He X, Zhang X, et al. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerging microbes & infections, 2019, 8(1): 303-306.

  23. Chen W, Zhao D, He X, et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Science China Life sciences, 2020, 63(5): 623-634.

  24. Lu S, Li F, Chen Q, et al. Rapid detection of African swine fever virus using Cas12a-based portable paper diagnostics. Cell discovery, 2020, 6: 18-28.

  25. Li J, Song J, Kang L, et al. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS pathogens, 2021, 17(7): e1009733.

  26. Huang L, Chen W, Liu H, et al. African Swine Fever Virus HLJ/18 CD2v Suppresses Type I IFN Production and IFN-Stimulated Genes Expression through Negatively Regulating cGMP-AMP Synthase-STING and IFN Signaling Pathways. Journal of immunology, 2023, 210(9): 1338-1350.

  27.  Huang L, Liu H, Ye G, et al. Deletion of African Swine Fever Virus (ASFV) H240R Gene Attenuates the Virulence of ASFV by Enhancing NLRP3-Mediated Inflammatory Responses. Journal of virology, 2023, 97(2): e0122722.

  28. Shan D, Tang X, Liu R, et al. Immunogenicity of a recombinant VSV-Vectored SARS-CoV vaccine induced robust immunity in rhesus monkeys after single-dose immunization. Virologica Sinica, 2022, 37(2): 248-255.

  29. Zhang J W, Wang H, Liu J, et al. Generation of A Stable GFP-reporter Zika Virus System for High-throughput Screening of Zika Virus Inhibitors. Virologica Sinica, 2021, 36(3): 476-489.

  30. Liu X, Li F, Zhang J, et al. The ATPase ATP6V1A facilitates rabies virus replication by promoting virion uncoating and interacting with the viral matrix protein. The Journal of biological chemistry, 2021, 296: 100096.

  31. Yan X, Hu S, Yang Y, et al. The Twin-Arginine Translocation System Is Important for Stress Resistance and Virulence of Brucella melitensis. Infection and immunity, 2020, 88(11): e00389-20.

  32. Shuai L, Ge J, Wen Z, et al. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines. Veterinary microbiology, 2020, 241: 108549.

  33. Shuai L, Wang J, Zhao D, et al. Integrin β1 Promotes Peripheral Entry by Rabies Virus. Journal of virology, 2020, 94(2): e01819-19.

  34. Zhang M, Sun Y, Chen W, et al. The 135 Gene of Goatpox Virus Encodes an Inhibitor of NF-κB and Apoptosis and May Serve as an Improved Insertion Site To Generate Vectored Live Vaccine. Journal of virology, 2018, 92(18): e00190-18.

  35. Ma L, Li F, Zhang J W, et al. Host Factor SPCS1 Regulates the Replication of Japanese Encephalitis Virus through Interactions with Transmembrane Domains of NS2B. Journal of virology, 2018, 92(12): e00197-18.

  36. Liu R, Wang J, Shao Y, et al. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antiviral research, 2018, 150: 30-38.

  37. Liu R Q, Ge J Y, Wang J L, et al. Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. Journal of integrative agriculture : JIA, 2017, 16(10): 2264-2273.

  38. Shuai L, Wang X, Wen Z, et al. Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs. Antiviral research, 2017, 146: 36-44.

  39. Liu R, Wen Z, Wang J, et al. Absence of Middle East respiratory syndrome coronavirus in Bactrian camels in the West Inner Mongolia Autonomous Region of China: surveillance study results from July 2015. Emerging microbes & infections, 2015, 4(12): e73.

  40. Shuai L, Feng N, Wang X, et al. Genetically modified rabies virus ERA strain is safe and induces long-lasting protective immune response in dogs after oral vaccination. Antiviral research, 2015, 121: 9-15.

  41. Yin C, Chen W, Hu Q, et al. Induction of protective immune response against both PPRV and FMDV by a novel recombinant PPRV expressing FMDV VP1. Veterinary research, 2014, 45(1): 1-9.

  42. Wang F, Qiao Z, Hu S, et al. Comparison of genomes of Brucella melitensis M28 and the B. melitensis M5-90 derivative vaccine strain highlights the translation elongation factor Tu gene tuf2 as an attenuation-related gene. Infection and immunity, 2013, 81(8): 2812-2818.

  43. Ge J, Wang X, Tao L, et al. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. Journal of virology, 2011, 85(16): 8241-8252.

  44. Tao L, Ge J, Wang X, et al. Molecular basis of neurovirulence of flury rabies virus vaccine strains: importance of the polymerase and the glycoprotein R333Q mutation. Journal of virology, 2010, 84(17): 8926-8936.

  45. Chen W, Hu S, Qu L, et al. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep. Vaccine, 2010, 28(30): 4742-4750.

  46. Ge J, Deng G, Wen Z, et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. Journal of virology, 2007, 81(1): 150-158.


扫一扫 关注我
网站首页 联系我们
TOP